Modeling Pedestrian Traffic in the Presence of Unmanned Mobile Robots

نویسندگان

  • Ross McCool
  • John M. Usher
  • Lesley Strawderman
چکیده

Interactions between pedestrians and robots are becoming more commonplace. In public areas, for example, robots may be used for information dissemination, security, or patrol tasks. Based upon existing literature in the field of human-robot interaction, the ISAPT simulation system was revised to model pedestrian behavior in the presence of an autonomous robot. Using an agent based modeling approach, pedestrians are statistically assigned one of four reported behaviors when a robot is encountered: stop to interact, stop to observe, slow down to look, and uninterested. The modeling methods for incorporating these behaviors include modifying a pedestrian’s existing agenda, while the pedestrian continues to make navigation decisions based on their overall utility function. Simulation results demonstrate effective integration of the ISAPT system’s added capability of modeling pedestrian-robot interaction. These results illustrate an effective means for adding this capability to microsimulation modeling systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrotor UAV Guidence For Ground Moving Target Tracking

The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...

متن کامل

Dynamical formation control of wheeled mobile robots based on fuzzy logic

In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...

متن کامل

Designing and Modeling a Control System for Aircraft in the Presence of Wind Disturbance (TECHNICAL NOTE)

This paper proposes a switching adaptive control for trajectory tracking of unmanned aircraft systems. The switching adaptive control method is designed to overcome the wind disturbance and achieve a proper tracking performance for control systems. In the suggested system, the wind disturbance is regarded as a finite set of uncertainties; a controller is designed for each uncertainty, and a per...

متن کامل

Experimental Analysis for Measuring Errors in Wheeled Mobile Robots (RESEARCH NOTE)

This paper presents experimental analysis of wheeled mobile robots. Mathematical modelling of the mobile robot is presented. The mobile robots consist of an omni-directional and three differential drive mobile robots are tested and moved in given trajectories and the systematic errors of the robots are determined. A new method for omni-direction mobile robot was introduced in which the robot wa...

متن کامل

Dynamic Modeling and Construction of a New Two-Wheeled Mobile Manipulator: Self-balancing and Climbing

Designing the self-balancing two-wheeled mobile robots and reducing undesired vibrations are of great importance. For this purpose, the majority of researches are focused on application of relatively complex control approaches without improving the robot structure. Therefore, in this paper we introduce a new two-wheeled mobile robot which, despite its relative simple structure, fulfills the req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015